Planet Hunters Talk

A Cloaking Device for Transiting Planets

  • johnfairweather by johnfairweather

    Centauri Dreams


    A Transit Signature for SETI?

    Posted: 04 Apr 2016 07:05 AM PDT

    David Kipping and Alex Teachey have a new paper out on the possibility of ‘cloaking’ a planetary signature. The researchers, both at Columbia University, make the case that any civilization anxious to conceal its existence — for whatever reason — would surely become aware that all stars lying along its ecliptic plane would see transits of the home world, just as its own scientists pursued transit studies of planets around other stars. And it turns out there are ways to make sure this signal is masked by adjusting the shape of the planet’s transit light curves.

    Now this is a fascinating scenario as presented by the head of the Hunt for Exomoons with Kepler, whose business it is to know about the slightest of variations in light curves because they may contain information about exomoons or rings. Thus Kipping is a natural to look into the artificial manipulation of light curves, a study with definite SETI implications. Because methods like these work in two directions — a civilization that does want to communicate could also alter its light curve in ways that would be unambiguously artificial. Today I want to focus on the latter idea, reserving cloaking methods for tomorrow’s post.

    This veers into the METI debate, but that’s not my purpose. Messaging to Extraterrestrial Intelligence is highly controversial, triggering arguments in these pages for the last decade. But let’s hold METI at one remove. The paper, delightfully titled “A Cloaking Device for Transiting Planets,” allows us to imagine how the manipulation of transit signatures could change a distant planet’s visibility. We may well decide not to brighten the Earth’s visibility through intentional transmissions, while understanding that an extraterrestrial culture might choose differently. Knowing what is possible by way of cloaking or enhancing a planetary signature, then, gives us plenty of food for thought for SETI as we consider what might turn up in our data.

    Modifying the Light Curve
    Here’s the notion in a nutshell, as drawn from the paper.

    Image: Figure 1. Illustration (not to scale) of the transit cloaking/broadcasting device. A laser beam (orange) is fired from the night side of inhabited planet (blue) towards a target star whilst the planet appears to transit the star, as seen from the receiver. In the case of the Earth, the planet could be cloaked by generating an inverse transit-like signal of peak power 60 MW. Credit: Kipping and Teachey.

    Controlled laser emissions are the key, effectively distorting the shape of a transit light curve. Just how this could be done is something we’ll discuss in the next post. But to begin, let’s think about how visible we are to any advanced civilization studying us. Forget about our radio and television signature, which is infinitesimal, and focus instead on the things we are doing right now to study other stars. I often write about transmission spectroscopy, which is how we search for the constituent molecules in a planetary atmosphere. The transiting planet, as it moves in front of its host star (as seen by our instruments) is bathed in the star’s light, its atmosphere providing a particular ‘overlay’ to the star’s spectrum.

    We’ll use the method to look for biosignatures as we refine it for smaller and smaller worlds, but we’ve already seen how successfully we can examine the atmospheres of ‘hot Jupiters’ like HD 189733b. A sufficiently capable civilization able to see our world transiting should be able to pick up the cluster of biosignatures that would identify the Earth as a living world. There have been proposals to look for atmospheric pollutants produced by industrial activity as a part of future SETI practice, and such activity could indeed become visible, though the idea of widespread pollution lasting for millennia seems a stretch. Understanding the damage it caused, surely the culture in question would either solve its pollution problems or else succumb to them.

    Let’s not forget the recent flurry of interest in the unusual star KIC 8462852. Here we’re looking at what could well be a natural phenomenon in the form of clouds of comets, but could possibly be evidence of artificial megastructures throwing highly distinctive light curves. We have much work ahead on KIC 8462852, so I only bring it up to suggest that there are many ways an intelligent species might make itself visible whether its intent was to do so or not.

    Turning Transits into ‘Broadcasts’
    Scientists as diverse as Ronald Bracewell, Richard Carrigan, Michael Papagiannis and Robert Freitas have studied the possibilities of such detections, with Carrigan most prominently identified with the search for Dyson spheres, swarms of energy collectors that surround a star to feed its colossal energies to a growing Type II civilization. And back in 2005, Luc Arnold (now at Aix Marseille Université) suggested that a civilization wanting to be known could resort to deliberate signaling by building a particular kind of geometric megastructure, one that when viewed in a transit would all but shout, through its distinctive light curve, that it was artificial.

    Kipping and Teachey are, as you would imagine, well aware of Arnold’s work, and argue that lasers offer far more practical methods. From the paper:

    Whilst any number of artificial transit profiles can be created with lasers, one ideally seeks a profile which is both energy efficient and unambiguously artificial. Producing upward spikes in-transit might seem like an obvious suggestion, but star spot crossings produce these forms with complex and information rich signatures (e.g. see Beky et al. 2014). Here, we argue that cloaking the ingress/egress of a transit, but leaving the main transit undistorted, would be a highly effective strategy since no known natural phenomenon is likely to produce such an effect.

    Image: Figure 6 from the paper, highlighting broadcasting rather than cloaking. Top: The power profile of a laser array designed to broadcast the Earth. An array of lasers producing a peak power of ∼ 20 MW for approximately 15 minutes nullifies the transit ingress and egress. Bottom: The resulting light curves as viewed by different broadband optical photometers. The observed impact parameter would be complex infinity, for which a normal light curve fit would be unable to explain and thus indicating the presence of artificial transit manipulation.

    A monochromatic laser emission could be spotted in a transit survey (and could be searched for in Kepler data), with follow-up spectroscopy confirming the artificial nature of the transmission. Kipping and Teachey also note what James and Dominic Benford recently pointed out in their paper on SETI efforts at KIC 8462852 — a beamed signal of whatever kind could carry information, so that in addition to identifying the presence of a technological culture, the beam could attempt more detailed communication (see SETI: Power Beaming in Context).

    I’ve focused in on broadcasting via transit light curve alteration because, as the paper argues, it is the most efficient use of these techniques as compared to cloaking, which I’ll describe tomorrow. I’m trying to stay out of the METI weeds here — this is not an argument in favor of identifying the Earth to ETI. Rather, it is an argument that other civilizations may use such methods, and thus this paper shows us a signature we should add to our catalog.

    And it has this further implication: If a civilization did choose to broadcast its existence through these methods, it would probably choose the shortest period planet in its solar system to carry the message. The choice is obvious, as the paper notes, for this produces “a higher duty cycle of distorted events,” making the detection all the more obvious. “We therefore suggest that any survey in archival data should not be limited to rocky planets in the habitable-zone of their host star.” An excellent reminder not to succumb to easy assumptions!

    Tomorrow I’ll return to the Kipping and Teachey paper with a look at cloaking possibilities. The paper is “A Cloaking Device for Transiting Planets,” accepted by Monthly Notices of the Royal Astronomical Society (preprint).

    Posted

  • johnfairweather by johnfairweather

    Centauri Dreams


    SETI: A New Kind of ‘Water Hole’

    Posted: 05 Apr 2016 06:45 AM PDT

    Some of you may recall an episode of Star Trek: The Next Generation in which the inhabitants of a planet called Aldea use a planetary defense system that includes a cloaking device. The episode, “When the Bough Breaks,” at one point shows the view from the Enterprise’s screens as the entire planet swims into view. My vague recollection of that show was triggered by the paper we looked at yesterday, in which David Kipping and Alex Teachey discuss transit light curves and the ability of a civilization to alter them.

    After all, if an extraterrestrial culture would prefer not to be seen, a natural thought would be to conceal its transits from worlds that should be able to detect them along the plane of the ecliptic. Light curves could be manipulated by lasers, and as we saw yesterday, the method could serve either to enhance a transit, thus creating a form of METI signaling, or to conceal one. In the latter case, the civilization would want to create a change in brightness that would essentially cancel out the transit light curve. It’s not exactly a ‘cloaking device,’ but it ought to work.

    Image: The Next-Generation Transit Survey (NGTS) telescopes operating at ESO Paranal, Chile. Transit observations have SETI implications we are only beginning to explore. Credit: ESO/ G. Lambert.

    A Galaxy of Xenophobes?

    As I said yesterday, I’m not here to reignite the METI debate as much as to acknowledge that what an alien culture might do is unknown. Rather than asking whether any civilization should try to conceal itself, let’s simply ask what it could do if it made the attempt.

    The idea has a brief history, with Eric Korpela (UC-Berkeley) and Shauna Sallmen (University of Wisconsin-La Crosse) suggesting in 2015 that ETI could effectively hide a planetary signature through the use of orbiting mirrors. This would, like the geometric masks envisioned by Luc Arnold, require engineering on a huge scale, and would also demand elaborate tuning for each target. Kipping and Teachey argue for a more affordable alternative using a directed laser beam:

    In our scheme… the advanced civilization emits a laser directed towards the other planetary system at precisely the instant when the other system would be able to observe a transit. The power profile of the laser would need to be the inverse of the expected transit profile, leading to a nullified flat line eliminating the transit signature.

    Image: Top: The unaltered light curve of the Earth transiting the Sun, as viewed by different broadband optical photometers (offset by 5 ppm). Middle: The power profile of a 600 nm laser array designed to cloak the Earth. An array of lasers producing a peak power of ∼ 30 MW over 13 hours nullifies the transit. Bottom: Residual light curve, as seen by the different photometers. Credit: David Kipping/Alex Teachey.

    The Kepler mission has produced the vast majority of recent exoplanet discoveries, and we have upcoming transit surveys in the works including TESS (Transiting Exoplanet Survey Satellite), PLATO (PLAnetary Transits and Oscillations of stars) and NGTS (Next-Generation Transit Survey). If a civilization wanted to shield itself from this kind of broadband optical survey, a monochromatic optical laser should do the trick. The paper estimates that the Earth could be ‘cloaked’ — hidden from view from a particular star system by having its transit nullified — with a 600 nm laser array emitting a peak power of ~30 MW over 13 hours.

    The power requirements are interesting because they are relatively low for a specific target, but the paper adds the obvious point that if we are trying to cloak a planet from a large number of targets, we would require larger power production.

    Nonetheless, we routinely use much larger numbers when talking about laser lightsails in the configurations that could enable interstellar flight. Kipping and Teachey point out that for a culture that develops those kinds of technologies, cloaking could become a secondary function of the laser arrays used primarily for propulsion.

    Chromatic cloaking (across all wavelengths) could be achieved by using a large number of beams (although with an order of magnitude higher energy cost), while tunable (‘supercontinuum’) lasers may emerge that can simulate any spectrum. But even with these capabilities, is cloaking an entire planet the most efficient choice for a civilization trying to hide itself? Perhaps a better course from the standpoint of economics and efficiency is to cloak the biosignatures that announce life’s presence. Let me quote from the paper on this:

    It is straightforward to use a chromatic laser array to cancel out the absorption features in the planet’s transmission spectrum, assuming laser emission can be produced at any desired wavelength. Indeed, the presence of an atmosphere could be cloaked altogether if the effective height changes of the planet as a function of wavelength are canceled out by lasers. The planet might then resemble a dead world totally devoid of any atmosphere and appear almost certainly hostile to life. Not only would this approach require a significantly smaller power output, it would also have the benefit of producing self-consistent observations insomuch as the presence of the planet might still be inferred by other means (i.e. through radial velocity analysis).

    What SETI Can Learn

    Kipping and Teachey refer to these methods as a ‘biocloak,’ and suggest that cloaking can be selective indeed, perhaps focusing on the absorption features of molecular hydrogen and ozone. In this case we are dealing with peak laser power of just ∼160 kW per transit. But the authors are clear about the limitations of these methods. Radial velocity methods can find a planet otherwise hidden by a chromatic transit cloak, and given technologies not so far advanced over what we have today, direct imaging can reveal atmospheric features of a planet even when a ‘biocloak’ is in place.

    “For these reasons” write the authors, “perhaps the most effective use of laser enabled transit distortion would be for broadcasting rather than cloaking.”

    And it was on that note that I began yesterday’s look at these possibilities. If we have based fifty years-plus of SETI on the notion that another civilization may choose to contact us, we have to acknowledge what Kipping and Teachey make clear: There are ways to alter transit signatures that make it obvious we are dealing with an advanced technology. And you can make the argument, as the authors do, that transits offer a different kind of ‘water hole’ for SETI, comparable in its own way to the ‘water hole’ frequencies we monitor in radio SETI.

    Thus while the cloaking aspects of this paper have received the most attention, I think the SETI implications are its strongest takeaway. It is a very short step from existing optical SETI to archival searches of transit signatures already in our files. Knowing what these signatures would look like is a step forward as we continue to probe for civilizations around nearby stars.

    Addendum: This email from Dr. Kipping, excerpted below, further explains the authors’ thinking about cloaking possibilities:
    …we never intended to solve cloaking from all detection methods in one paper (that would be a tall order to demand of any research paper). Rather, we started with the simplest and most successful technique, transits, and showed that it is energetically and technologically quite feasible for even our current level of technology to build an effective cloak.

    Whilst we acknowledge that there are ways to defeat the proposed cloak (e.g. polarization of laser beams, direct imaging), we see these as problems which are likely to be solved by more advanced civilizations than ourselves, or indeed in future work (by humans!). What we are trying to do on the cloaking side is stimulate a conversation- that it is surprisingly easy to hide planets. Given that many notable scientists are opposed to METI, it is not unreasonable that other civilizations may choose to do this. The scenario could be that they would have long ago observed the Earth as an inhabited planet, and then turned on a cloak as a insurance policy, buying them time to reveal their presence when they choose to, rather than our increasingly penetrating telescopes finding them before they wish.

    The paper is Kipping and Teachey, “A Cloaking Device for Transiting Planets,” accepted at Monthly Notices of the Royal Astronomical Society (preprint), The Korpela and Sallmen paper is “Modeling Indications of Technology in Planetary Transit Light Curves – Dark Side Illumination,” Astrophysical Journal Vol. 809, No. 2 (abstract).

    Posted